Math 250A Lecture 19 Notes

Daniel Raban

October 31, 2017

1 Field Extensions

1.1 Field extensions and algebraic elements

Definition 1.1. Let K be a field. A field extension L of K is a field such that K is a subfield of L. This is written as $K \subseteq L$ or L/K.

Example 1.1. \mathbb{C} is a field extension of \mathbb{R} .

Definition 1.2. The *degree* [L:K] of K/L is dim L as a vector space over K.

Example 1.2.

 $[\mathbb{C}:\mathbb{R}]=2.$

Definition 1.3. An element $\alpha \in L$ is called *algebraic* over K if α is a root of some polynomial in K[x].

Example 1.3. The real number $\sqrt[5]{2}$ is algebraic over \mathbb{Q} , as a root of $x^5 - 2$.

Example 1.4. Neither π nor e is algebraic over \mathbb{Q} . The proof of this is hard.

In general, it is difficult to prove whether something is algebraic or not. The following are still open problems:

- 1. Is $e + \pi$ algebraic?
- 2. Is $e\pi$ algebraic?

Example 1.5. Let $L = \mathbb{Q}(x)$ be the rational functions in x. Then $[L : \mathbb{Q}] = \infty$, and x is not algebraic.

Theorem 1.1. α is algebraic over K iff α is contained in a finite extension K_1 of K $([K_1:K] < \infty)$.

Proof. Suppose $\alpha \in K_1$ with $[K_1 : K] = n < \infty$. Look at $1, \alpha, \alpha^2, \ldots, \alpha^n$. This is n + 1 elements in an *n*-dimensional vector space over K, so we get

$$a_1 + a_1 \alpha + \dots + a_n \alpha^n = 0,$$

where $a_i \in K$ and the a_i are not all 0. So α is algebraic.

Suppose that α is algebraic. Then $p(\alpha) = 0$ for some $p \in K[x]$. We can assume p is irreducible. So K[x]/(p) is a field, K_1 . So $[K_1:K] = \deg(p)$, with basis $1, x, x^2, \ldots, x^{\deg(p)-1}$. So we get a map $K[x]/(p) \to L$.

This map is injective since K[x] is a field, so the image of the map is a field of degree $< \infty$ containing α .

Lemma 1.1. Let $K \subseteq K_1 \subseteq K_2$. Then

$$[K_2:K] = [K_2:K_1][K_1:K].$$

Proof. Let x_1, \ldots, x_m be a basis of K_1 over K, and let y_1, \ldots, y_n be a basis of K_2 over K_1 . Then $x_i y_j$ form a basis of K_2 over K (exercise). So $[K_2:K] = mn$.

Proposition 1.1. Suppose $\alpha, \beta \in L$ are algebraic over K. Then so are $\alpha + \beta$ and $\alpha\beta$.

Proof. Say $\alpha \in K_1$ with $[K_1 : K]$ is finite. β satisfies an irreducible polynomial of degree $n < \infty$ over K, so β satisfies an irreducible polynomial of degree $\leq n$ over K_1 . Then β is algebraic over K, say $\beta \in K_2$ with $[K_2 : K_1] < \infty$. Then

$$[K_2:K] = [K_2:K_1][K_1:K],$$

so $[K_2:K] = [K_2:K_1][K_1:K] < \infty$. $\alpha + \beta \in K_2$ and $\alpha\beta \in K_2$, so they are algebraic. \Box

Example 1.6. $\alpha = \sqrt{2} + \sqrt[3]{2} + \sqrt[5]{2}$ is algebraic. The smallest degree polynomial p(x) with $p(\alpha) = 0$ has degree 30.

Example 1.7. All algebraic elements of \mathbb{C} over \mathbb{Q} form a field.¹

In general, we have the following fact.

Proposition 1.2. K[x]/p(x) is a field if p is irreducible.

¹This is called the field of algebraic numbers and is studied in algebraic number theory.

Proof. This is a quick consequence of a homework problem we have done, and should be done as an exercise. Use the fact that K[x] is a PID.

Suppose that p is not irreducible. Then for p = fg for some coprime f, g. Then $K[x]/(p) \cong K[x]/(f) \times K[x]/(g)$ by the Chinese remainder theorem. So if p does not have multiple copies of the same factor, K[x]/(p) is a product of fields. If p has multiple copies of a factor, K[x]/(p) can be strange.

Example 1.8. Let $p = x^n$. Then $K[x]/(x^n)$ is the ring of truncated polynomials of the form $a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$ with $x^n = 0$ and $a_i \in K$. This has nilpotent elements, so it is not a product of fields.

Suppose that p is an irreducible polynomial in K[x]. We can find an extension field L so that p has a root in L, L = K[x]/(p). Does P factorize into linear factors in L? Sometimes.

Example 1.9. Let $p(x) = x^3 - 2$ in $\mathbb{Q}[x]$. This is irreducible by Eisenstein's criterion. Let $L = \mathbb{Q}[x]/(x^3 - 3) = \mathbb{Q}[\sqrt[3]{2}] = \{a_0 + a_1\sqrt[3]{2} + a_2(\sqrt[3]{2})^2 : a_i \in \mathbb{Q}\}$. Does $x^3 - 2$ factor in linear factors in L? It does not. $L \subseteq \mathbb{R}$, and $x^3 - 2$ only has 1 real root. The others are $\sqrt[3]{2}e^{2\pi i/3}$ and $\sqrt[3]{2}e^{4\pi i/3}$.

Example 1.10. Let $p(x) = x^4 + 1$. This is irreducible; check by sending $x \mapsto x + 1$. We get $x^4 + 4x^3 + 6x^2 + 4x + 2$, which is irreducible by Eisenstein. Look at the complex roots: $e^{\pi i/4}$, $e^{3\pi i/4}$, $e^{5\pi i/4}$, $e^{7\pi i/4}$. So

$$L = \mathbb{Q}[x]/(x^4 + 1) \cong \mathbb{Q}[\zeta] = \left\{ a_0\zeta + z_1\zeta + a_2\zeta^2 + z_3\zeta^3 : a_i \in \mathbb{Q} \right\}.$$

In this case, p factors as

$$p(x) = (x - \zeta)(x - \zeta^3)(x - \zeta^5)(x - \zeta^7).$$

1.2 Splitting fields

Definition 1.4. Suppose $p \in K[x]$ with $K \subseteq L$. L is a splitting field of p if

- 1. The polynomial p factors into linear factors in L.
- 2. L is generated by roots of p.

Example 1.11. $\mathbb{Q}[\zeta]$ is a splitting field of $x^4 + 1$.

Example 1.12. $\mathbb{Q}[\sqrt[3]{2}]$ is not a splitting field of $x^3 - 2$.

How do we find a splitting field? Let's find the splitting field of $x^3 - 2$. Form $\mathbb{Q}[\sqrt[3]{2}] = \mathbb{Q}[x]/(x^3 - 2) = K_1$. In K_1 , $x^3 - 2 = (x - \sqrt[3]{2})(x^2 + \sqrt[3]{2}x + (\sqrt[3]{2})^2)$, where the latter factor is in $K_1[x]$. Add the roots of this to K_1 , forming $K_1[x]/(x^2 + \sqrt[3]{2}x + (\sqrt[3]{2})^2)$.

Here is the general construction of the splitting field of $p \in K[x]$: Factor p. If there are no factors of degree > 1, we are done. Otherwise, pick a factor q, where q is irreducible and of degree > 1. Form a new field K[x]/(q). Over this field, p has one extra linear factor. Repeat this with p/q. We get

$$K \subseteq K_1 \subseteq K_2 \subseteq K_3 \subseteq \cdots \subseteq K_n$$

where at degree k, we add the root α_k of $p/((x - \alpha_1) \cdots (x - \alpha_{k-1}))$. So

 $[K_n:K] \le n!$

using our lemma about degrees. So the splitting field has degree $\leq \deg(p)!$.

The splitting field is essentially unique.

Proposition 1.3. If L_1, L_2 are 2 splitting fields of $K, L_1 \rightarrow L_2$, we can find an isomorphism from $L_1 \rightarrow L_2$, fixing all elements of K.

Proof. As before, construct the sequence of field extensions

$$K \subseteq K_1 \subseteq K_2 \subseteq K_3 \subseteq \cdots \subseteq K_n.$$

Suppose L is a splitting field of K. Then $K_1 \to L$ because $K_1 = K[x]/q_1(x)$, and L is a splitting field of P. We can form maps $K_i \to L$ for each i in this way.

Then the image of K_n is all of L since L is generated by the roots of p. So $K_n \cong L$. \Box

This isomorphism is not necessarily unique.

Example 1.13. \mathbb{C} is the splitting field of $x^2 + 1$ over \mathbb{R} . What is $\sqrt{-1}$? It can be *i* or -i, depending on which isomorphism you use.

1.3 Application to finite fields

Proposition 1.4. For each prime power p^n , there is a unique finite field F_{p^n} with p^n elements.

Proof. The main idea of the proof is that F_{p^n} is the splitting field of $x^{p^n} - x$.

We first show that the splitting field of $x^{p^n} - x$ has p^n elements. This has p^n roots because the derivative is $p^n x^{p^n-1} - 1$, which is coprime to $x^{p^n} - x$. The key point is is that the roots form a field (closed under addition and multiplication) because $(a+b)^p = a^p + b^p$ in characteristic p, and because the roots are 0 or roots to $x^{p^n-1} = 1$. So the roots form a field of order p^n .

For uniqueness, we want to check that any field of order p^n is a splitting field of $x^{p^n} - x$. The key point here is that all elements are roots of $x^{p^n} - x$. If x = 0, it is a root. If $x \neq 0$, then $x \in L^*$ (order $p^n - 1$ and is a group), so $x^{p^n-1} = 1$ by Lagrange's theorem.

Example 1.14. Let's construct the field of order $2^4 = 16$. We have proved that it exists, but the abstract proof is useless for construction. Find the irreducible factor p of $x^{16} - x$ of degree 4. Form $F_2[x]/p$. Any field of order 16 is a splitting field; for example $F_2[x]/p$ for any irreducible p of degree 4. Any irreducible polynomial in F[x] of degree 4 divides $x^{16} - x$. So

$$x^{16} - x = (x^4 + x + 1)(x^4 + x^3 + 1)(x^4 + x^3 + x^2 + x + 1)(x^2 + x + 1)(x + 1)x.$$

Note that 1,2, and 4 are the factors of 4.² This is divisible by $x^{2^2} - x$ and $x^{2^1} - 1$. To get an explicit construction of the field of order 2⁴, use $F_2/(x^4 + x + 1)$, or quotient out by your favorite irreducible polynomial of degree 4 over F_2 .³

Example 1.15. How many irreducible polynomials are there of degree 6 in $F_2[x]$? We have that

 $x^{2^6} - x = (\text{irred. polys of deg 6})(\text{irred. polys of deg 3})(\text{irred. polys of deg 2})(x+1)x.$

Using a kind of inclusion-exclusion argument, we get that the degree of the product of polynomials of degree 6 is $2^6 - 2^3 - 2^2 + 2^1$. Each polynomial has degree 6, so the number of polynomials is $(2^6 - 2^3 - 2^2 + 2^1)/6 = 9$.

1.4 Algebraic closure

Definition 1.5. L is called the *algebraic closure* of K if the following conditions hold:

1. Any element of L is algebraic over K.

 $^{^{2}}$ You may recall that these are the irreducible polynomials we computed in a previous lecture.

³In general, there is no preferred element to quotient out by. This is troublesome, because the fields you obtain are technically different, even though they are isomorphic.

2. Any polynomial in L[x] has a root.

Example 1.16. \mathbb{C} is the algebraic closure of \mathbb{R} .

Proposition 1.5. Any field has an algebraic closure, unique up to isomorphism. More generally, given any set of polynomials in K[x], we can find a splitting field such that:

- 1. All polynomials in the set factorize into linear factors.
- 2. L is generated by the roots of the polynomials.

Proof. Suppose there are a countable number of polynomials p_1, p_2, p_3, \ldots Form

$$K \subseteq K_1 \subseteq K_2 \subseteq \cdots$$
,

where K_n is a splitting field for p_n over K_{n-1} . The union is a splitting field. If we have an uncountable number of polynomials, use the magic words: Zorn's lemma. So we have found $L \supseteq K$ such that all polynomials in K[x] have a root in L; we want that all polynomials in L[x] have a root in L.

Suppose that p is irreducible in L[x], and form M = L[x]/p(x). Then the coefficients of p are all in K, so they all lie in some finite extension of K. So α is contained in a finite extension of K, so α is algebraic over K. This makes $\alpha \in L$ since any polynomial in K[x]splits into linear factors in L.

Uniqueness of the algebraic closure is much like the uniqueness of splitting fields. \Box

It's difficult to find easy to explain examples of algebraic closures.

Example 1.17. Let K be the field of formal Laurent series over \mathbb{C} . This has elements $\dots + a_{-n}z^{-n} + \dots + a_0 + a_1z + \dots$ with $a_i \in \mathbb{C}$. The algebraic closure is

$$\bigcup_{k>1} \text{ formal Laurent series in } z^{1/k}.$$

These are called Puiseux series.⁴

⁴These date back to Newton, but they are not named after him because no one knew what algebraic closures were back then.