
Math 250A Lecture 19 Notes

Daniel Raban

October 31, 2017

1 Field Extensions

1.1 Field extensions and algebraic elements

Definition 1.1. Let K be a field. A field extension L of K is a field such that K is a
subfield of L. This is written as K ⊆ L or L/K.

Example 1.1. C is a field extension of R.

Definition 1.2. The degree [L : K] of K/L is dimL as a vector space over K.

Example 1.2.
[C : R] = 2.

Definition 1.3. An element α ∈ L is called algebraic over K if α is a root of some
polynomial in K[x].

Example 1.3. The real number 5
√

2 is algebraic over Q, as a root of x5 − 2.

Example 1.4. Neither π nor e is algebraic over Q. The proof of this is hard.

In general, it is difficult to prove whether something is algebraic or not. The following
are still open problems:

1. Is e+ π algebraic?

2. Is eπ algebraic?

Example 1.5. Let L = Q(x) be the rational functions in x. Then [L : Q] = ∞, and x is
not algebraic.

Theorem 1.1. α is algebraic over K iff α is contained in a finite extension K1 of K
([K1 : K] <∞).
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Proof. Suppose α ∈ K1 with [K1 : K] = n < ∞. Look at 1, α, α2, . . . , αn. This is n + 1
elements in an n-dimensional vector space over K, so we get

a1 + a1α+ · · ·+ anα
n = 0,

where ai ∈ K and the ai are not all 0. So α is algebraic.
Suppose that α is algebraic. Then p(α) = 0 for some p ∈ K[x]. We can assume p is irre-

ducible. So K[x]/(p) is a field, K1. So [K1 : K] = deg(p), with basis 1, x, x2, . . . , xdeg(p)−1.
So we get a map K[x]/(p)→ L.

K[x]/(p) L

K

x 7→α

This map is injective since K[x] is a field, so the image of the map is a field of degree <∞
containing α.

Lemma 1.1. Let K ⊆ K1 ⊆ K2. Then

[K2 : K] = [K2 : K1][K1 : K].

Proof. Let x1, . . . , xm be a basis of K1 over K, and let y1, . . . , yn be a basis of K2 over K1.
Then xiyj form a basis of K2 over K (exercise). So [K2 : K] = mn.

Proposition 1.1. Suppose α, β ∈ L are algebraic over K. Then so are α+ β and αβ.

Proof. Say α ∈ K1 with [K1 : K] is finite. β satisfies an irreducible polynomial of degree
n < ∞ over K, so β satisfies an irreducible polynomial of degree ≤ n over K1. Then β is
algebraic over K, say β ∈ K2 with [K2 : K1] <∞. Then

[K2 : K] = [K2 : K1][K1 : K],

so [K2 : K] = [K2 : K1][K1 : K] <∞. α+ β ∈ K2 and αβ ∈ K2, so they are algebraic.

Example 1.6. α =
√

2 + 3
√

2 + 5
√

2 is algebraic. The smallest degree polynomial p(x) with
p(α) = 0 has degree 30.

Example 1.7. All algebraic elements of C over Q form a field.1

In general, we have the following fact.

Proposition 1.2. K[x]/p(x) is a field if p is irreducible.

1This is called the field of algebraic numbers and is studied in algebraic number theory.
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Proof. This is a quick consequence of a homework problem we have done, and should be
done as an exercise. Use the fact that K[x] is a PID.

Suppose that p is not irreducible. Then for p = fg for some coprime f, g. Then
K[x]/(p) ∼= K[x]/(f)×K[x]/(g) by the Chinese remainder theorem. So if p does not have
multiple copies of the same factor, K[x]/(p) is a product of fields. If p has multiple copies
of a factor, K[x]/(p) can be strange.

Example 1.8. Let p = xn. Then K[x]/(xn) is the ring of truncated polynomials of the
form a0 + a1x+ · · ·+ an−1x

n−1 with xn = 0 and ai ∈ K. This has nilpotent elements, so
it is not a product of fields.

Suppose that p is an irreducible polynomial in K[x]. We can find an extension field
L so that p has a root in L, L = K[x]/(p). Does P factorize into linear factors in L?
Sometimes.

Example 1.9. Let p(x) = x3 − 2 in Q[x]. This is irreducible by Eisenstein’s criterion.
Let L = Q[x]/(x3 − 3) = Q[ 3

√
2] =

{
a0 + a1

3
√

2 + a2(
3
√

2)2 : ai ∈ Q
}

. Does x3 − 2 factor in
linear factors in L? It does not. L ⊆ R, and x3 − 2 only has 1 real root. The others are
3
√

2e2πi/3 and 3
√

2e4πi/3.

Example 1.10. Let p(x) = x4 + 1. This is irreducible; check by sending x 7→ x + 1. We
get x4 + 4x3 + 6x2 + 4x+ 2, which is irreducible by Eisenstein. Look at the complex roots:
eπi/4, e3πi/4, e5πi/4, e7πi/4. So

L = Q[x]/(x4 + 1) ∼= Q[ζ] =
{
a0ζ + z1ζ + a2ζ

2 + z3ζ
3 : ai ∈ Q

}
.

In this case, p factors as

p(x) = (x− ζ)(x− ζ3)(x− ζ5)(x− ζ7).

1.2 Splitting fields

Definition 1.4. Suppose p ∈ K[x] with K ⊆ L. L is a splitting field of p if

1. The polynomial p factors into linear factors in L.

2. L is generated by roots of p.

Example 1.11. Q[ζ] is a splitting field of x4 + 1.

Example 1.12. Q[ 3
√

2] is not a splitting field of x3 − 2.

3



How do we find a splitting field? Let’s find the splitting field of x3 − 2. Form Q[ 3
√

2] =
Q[x]/(x3 − 2) = K1. In K1, x

3 − 2 = (x− 3
√

2)(x2 + 3
√

2x+ ( 3
√

2)2), where the latter factor
is in K1[x]. Add the roots of this to K1, forming K1[x]/(x2 + 3

√
2x+ ( 3

√
2)2).

Here is the general construction of the splitting field of p ∈ K[x]: Factor p. If there are
no factors of degree > 1, we are done. Otherwise, pick a factor q, where q is irreducible and
of degree > 1. Form a new field K[x]/(q). Over this field, p has one extra linear factor.
Repeat this with p/q. We get

K ⊆ K1 ⊆ K2 ⊆ K3 ⊆ · · · ⊆ Kn,

where at degree k, we add the root αk of p/((x− α1) · · · (x− αk−1)). So

[Kn : K] ≤ n!

using our lemma about degrees. So the splitting field has degree ≤ deg(p)!.
The splitting field is essentially unique.

Proposition 1.3. If L1, L2 are 2 splitting fields of K, L1 → L2, we can find an isomor-
phism from L1 → L2, fixing all elements of K.

L1 L2

K

Proof. As before, construct the sequence of field extensions

K ⊆ K1 ⊆ K2 ⊆ K3 ⊆ · · · ⊆ Kn.

Suppose L is a splitting field of K. Then K1 → L because K1 = K[x]/q1(x), and L is a
splitting field of P . We can form maps Ki → L for each i in this way.

K K1 K2 · · · Kn

L

Then the image of Kn is all of L since L is generated by the roots of p. So Kn
∼= L.

This isomorphism is not necessarily unique.

Example 1.13. C is the splitting field of x2 + 1 over R. What is
√
−1? It can be i or −i,

depending on which isomorphism you use.
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1.3 Application to finite fields

Proposition 1.4. For each prime power pn, there is a unique finite field Fpn with pn

elements.

Proof. The main idea of the proof is that Fpn is the splitting field of xp
n − x.

We first show that the splitting field of xp
n − x has pn elements. This has pn roots

because the derivative is pnxp
n−1− 1, which is coprime to xp

n −x. The key point is is that
the roots form a field (closed under addition and multiplication) because (a+ b)p = ap+ bp

in characteristic p, and because the roots are 0 or roots to xp
n−1 = 1. So the roots form a

field of order pn.
For uniqueness, we want to check that any field of order pn is a splitting field of xp

n−x.
The key point here is that all elements are roots of xp

n − x. If x = 0, it is a root. If x 6= 0,
then x ∈ L∗ (order pn − 1 and is a group), so xp

n−1 = 1 by Lagrange’s theorem.

Example 1.14. Let’s construct the field of order 24 = 16. We have proved that it exists,
but the abstract proof is useless for construction. Find the irreducible factor p of x16 − x
of degree 4. Form F2[x]/p. Any field of order 16 is a splitting field; for example F2[x]/p
for any irreducible p of degree 4. Any irreducible polynomial in F [x] of degree 4 divides
x16 − x. So

x16 − x = (x4 + x+ 1)(x4 + x3 + 1)(x4 + x3 + x2 + x+ 1)(x2 + x+ 1)(x+ 1)x.

Note that 1,2, and 4 are the factors of 4.2 This is divisible by x2
2 − x and x2

1 − 1. To get
an explicit construction of the field of order 24, use F2/(x

4 + x + 1), or quotient out by
your favorite irreducible polynomial of degree 4 over F2.
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Example 1.15. How many irreducible polynomials are there of degree 6 in F2[x]? We
have that

x2
6 − x = (irred. polys of deg 6)(irred. polys of deg 3)(irred. polys of deg 2)(x+ 1)x.

Using a kind of inclusion-exclusion argument, we get that the degree of the product of
polynomials of degree 6 is 26− 23− 22 + 21. Each polynomial has degree 6, so the number
of polynomials is (26 − 23 − 22 + 21)/6 = 9.

1.4 Algebraic closure

Definition 1.5. L is called the algebraic closure of K if the following conditions hold:

1. Any element of L is algebraic over K.

2You may recall that these are the irreducible polynomials we computed in a previous lecture.
3In general, there is no preferred element to quotient out by. This is troublesome, because the fields you

obtain are technically different, even though they are isomorphic.
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2. Any polynomial in L[x] has a root.

Example 1.16. C is the algebraic closure of R.

Proposition 1.5. Any field has an algebraic closure, unique up to isomorphism. More
generally, given any set of polynomials in K[x], we can find a splitting field such that:

1. All polynomials in the set factorize into linear factors.

2. L is generated by the roots of the polynomials.

Proof. Suppose there are a countable number of polynomials p1, p2, p3, . . . . Form

K ⊆ K1 ⊆ K2 ⊆ · · · ,

where Kn is a splitting field for pn over Kn−1. The union is a splitting field. If we have an
uncountable number of polynomials, use the magic words: Zorn’s lemma. So we have found
L ⊇ K such that all polynomials in K[x] have a root in L; we want that all polynomials
in L[x] have a root in L.

Suppose that p is irreducible in L[x], and form M = L[x]/p(x). Then the coefficients
of p are all in K, so they all lie in some finite extension of K. So α is contained in a finite
extension of K, so α is algebraic over K. This makes α ∈ L since any polynomial in K[x]
splits into linear factors in L.

Uniqueness of the algebraic closure is much like the uniqueness of splitting fields.

It’s difficult to find easy to explain examples of algebraic closures.

Example 1.17. Let K be the field of formal Laurent series over C. This has elements
· · ·+ a−nz

−n + · · ·+ a0 + a1z + · · · with ai ∈ C. The algebraic closure is⋃
k≥1

formal Laurent series in z1/k.

These are called Puiseux series.4

4These date back to Newton, but they are not named after him because no one knew what algebraic
closures were back then.
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